
Assembly Crash Course
CSCI 297E: Ethical Hacking

Digging Deeper

http://www.electronics-tutorials.ws/logic/logic_1.html

All roads lead to the CPU

CPU

Interpreter
or JIT

Compiler

C, C++, Rust
Python,

JavaScript,
Java

Intermediate Language
Bytecode

Source Code

Binary-encoded
Instructions

Too deep!

http://www.electronics-tutorials.ws/category/combination

Computer Architecture (very high level)

CPU

Memory

Disk

Network +
Others "S

om
e

so
rt

 o
f

br
id

ge
."

Computer Architecture (drilling down)

CPU

Memory

Disk

Network +
Others "S

om
e

so
rt

 o
f

br
id

ge
."

CU

ALU

Registers

Computer Architecture (further down!)

CPU

Memory

Disk

Network +
Others "S

om
e

so
rt

 o
f

br
id

ge
."

Cache

CU

ALU

Registers

Computer Architecture (as far as we'll go)
CPU

Memory

Disk

Network +
Others "S

om
e

so
rt

 o
f

br
id

ge
."

L2
Cache

L1 Cache

CU

ALU

Registers

L1 Cache

CU

ALU

Registers

John Mauchly (Physicist), John Presper Eckert (Electrical Engineer), John Von Neumann (Mathematician)

John von Neumann, First Draft of a Report on the EDVAC, 1945.

All roads lead to the CPU

Interpreter
or JIT

Compiler

C, C++, Rust
Python,

JavaScript,
Java

Intermediate Language
Bytecode

Source Code

Binary-encoded
Instructions

0100110101110100001011100110011001100111101100011010001

All Roads Lead to the CPU

Interpreter

Bytecode
Compiler

JIT Compiler

Bytecode
Interpreter

Traditional
Compiler

Perl

Python

Bash

Ruby

Java

C

C++

C#

Lua

Rust

JavaScript

010101

#

Humans have a hard time with binary code...

So we created a text representation of the binary...

This representation is called Assembly.

The binary and the assembly code is equivalent*.

1

Speaking Binary
0 1 0 0 1 0 1

"push" "rbp"

"Assembly"?
Assembly is named "Assembly" because it is assembled
(not compiled) into binary code.

Invention:
Kathleen Booth,
Late 1940s/early 1950s,
For the APE(X)C (All-purpose Electronic (Rayon) Computer).

Adoption:
The second "stored-program computer" had an assembler,
Written by David Wheeler in 1948.

#

How do we tell people what to do? Sentences.

Let's look at an assembly "sentence" in terms of English grammar:

Sentence: we'll call this an "instruction" in assembly.
Verb: what do you want the instruction to do? We'll call this an "operation".
Noun: what do you want the instruction to do it to? We'll call this an "operand".

... that's it?
Simple!

Assembly tells the CPU what to do

Simplicity
Assembly is the simplest programming language.

It'd have to be, CPUs need to understand it!

You can master assembly in a week!

Nouns / Operands
What types of nouns might we deal with? Data!

For the most part, the CPU is concerned with three types of data:

data we directly give it as part of the instruction data that is close at hand data in storage

Verbs / Operations
What might you want to tell the computer to do with data?

Some ideas:
add some data together
subtract some data
multiply some data
divide some data
move some data into or out of storage
compare two pieces of data with each other
test some other properties of data

Now you (almost) know some Assembly!

Assembly Dialects
Assembly is a direct translation of binary code ingested by the CPU...
... so it's very CPU architecture dependent.

Every architecture has its own variant:
x86 assembly
arm assembly
ppc assembly
mips assembly
risc-v assembly
pdp-11 assembly

The list goes on! Regardless of dialect, an assembly instruction looks like one of:
OPERATION
OPERATION OPERAND
OPERATION OPERAND OPERAND
OPERATION OPERAND OPERAND OPERAND

Dialects of Assembly Dialects
In the beginning (of x86), Intel created:
... the Intel 8085 CPU
... then the Intel 8086 CPU
... then the Intel 80186 CPU
... then the Intel 80286 CPU
... then the Intel 80386 CPU, which became modern x86
... and gave us a great Assembly dialect for all of them!

AT&T came along and created a (subjectively) TERRIBLE Assembly syntax for
x86.
Why? No one knows.

tl;dr: there are two competing Assembly syntaxes for x86:
the right one (Intel) and the VERY WRONG one (AT&T).

Use Intel x86 syntax. They literally made the architecture.

#

All roads lead to the CPU

Interpreter
or JIT

Compiler

C, C++, Rust
Python,

JavaScript,
Java

Intermediate Language
Bytecode

Source Code

Binary-encoded
Instructions

0100110101110100001011100110011001100111101100011010001

Binary?
Described mathematically by:
Thomas Harriot (pictured), Juan Caramuel y Lobkowitz, and/or Leibniz
sometime in the 16th and 17th centuries.
But also known earlier: https://en.wikipedia.org/wiki/Binary_code

Decimal (base 10) has digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Binary (base 2) has digits 0, 1.

A binary digit is called a bit.

Numbers greater than 1 require multiple digits
(like numbers greater than 9 for base 10)

Decimal Binary

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

16 10000

17 10001

18 10010

19 10011

20 10100

21 10101

22 10110

23 10111

24 11000

https://en.wikipedia.org/wiki/Binary_code

Computers and Binary
Why do computers speak binary? Consider the logic gate.

a. A, B, and Q represent either "on" or "off"
b. these concepts can be mapped to 1 and 0
c. "on" or "off" are relatively easy to check for

i. binary: "is the lightbulb on"
ii. other systems: "how bright is the lightbulb"

A few historical examples of ternary computers exist.
- Thomas Fowler's Calculating Machine

https://en.wikipedia.org/wiki/Thomas_Fowler_(inventor)#Calculating_machine
- Setun: https://en.wikipedia.org/wiki/Setun
- QTC-1: https://ieeexplore.ieee.org/document/5195

But, binary is the standard.

http://www.electronics-tutorials.ws/logic/logic_1.html

https://en.wikipedia.org/wiki/Thomas_Fowler_(inventor)#Calculating_machine
https://en.wikipedia.org/wiki/Setun
https://ieeexplore.ieee.org/document/5195

Humans and Binary
Binary overwhelms the senses with a LOT of digits.
consider: 197

10
 is 11000101

2
compute: 11000101

2
- 10010011

2
 without writing it out

 (it's 197
10
- 147

10
= 50

10
)

Decimal's "round" numbers don't align well to binary
"round" numbers.
10000000

2
 is 128

10
11000000

2
 is 192

10
11100000

2
 is 224

10
11110000

2
 is 240

10

But if we use a base 2X, we can represent X binary digits
at once! Common bases:
Octal (base 23, or 8), commonly prefixed with 0
Hexadecimal (base 24, or 16).
Caveat: how do we represent digits >10? A,B,C,D,E, and F!
Commonly prefixed with 0x.

Decimal Binary Octal Hex

0 0 00 0x0

1 1 01 0x1

2 10 02 0x2

3 11 03 0x3

4 100 04 0x4

5 101 05 0x5

6 110 06 0x6

7 111 07 0x7

8 1000 010 0x8

9 1001 011 0x9

10 1010 012 0xA

11 1011 013 0xB

12 1100 014 0xC

13 1101 015 0xD

14 1110 016 0xE

15 1111 017 0xF

16 10000 020 0x10

17 10001 021 0x11

18 10010 022 0x12

19 10011 023 0x13

20 10100 024 0x14

128 10000000 0200 0x80

192 11000000 0300 0xc0

224 11100000 0340 0xe0

240 11110000 0360 0xf0

Expressing Text
Bits in a computer typically do something useful.
Examples: encoding assembly instructions, whole programs, images, text...

Example: the earliest extant text encoding format is ASCII.
American Standard Code for Information Exchange.
Specified how to encode, in 7 bits, the English alphabet and common symbols.

For the most part:
Uppercase letters: 0x40 + LETTER_INDEX_IN_HEX
Lowercase letters: 0x60 + LETTER_INDEX_IN_HEX
Digit representations: 0x30 + DIGIT
Characters lower than 0x20 (space) are "control characters":
0x09 (tab), 0x0a (newline), 0x07 (bell!)

ASCII has evolved into UTF-8, used on 98% of the web.
Leftmost bit (0x80) of letter signifies extended character (e.g., encoded in more than 8 bits).

Grouping Bits into Bytes
A standard-sized grouping of bits is called a byte.

Historically, somewhat tied to text encoding (e.g., # of bits to encode a letter).

Historical byte widths.
Nothing inherently good in any # of bits over any other # of bits (within reason).
I've encountered architectures with 6-bit, 7-bit, 8-bit, 9-bit, 12-bit, 16-bit, 18-bit, 31-bit, and 36-bit bytes!
The newest "real-world" architecture of these was from the late 1960s...

8-bit byte.
IBM invented 8-bit EBCDIC in 1963 for use on their terminals.
ASCII (also released in 1963!) replaced it, but the 8-bit byte stuck.
Every modern architecture uses 8-bit bytes.

Grouping Bytes into Words
Bytes are 8-bit, but modern architectures are (mostly) 64-bit...

Word.
Words are groupings of 8-bit bytes.
Architectures define the word width.
For historical reasons, the terminology is really messed up.

Nibble: half of a byte, 4 bits
Byte: 1 byte, 8 bits
Half word / "word": 2 bytes, 16 bits
Double word (dword): 4 bytes, 32 bits
Quad word (qword): 8 bytes, 64 bits

Note that the term Word on a 64-bit architecture can refer to either 16 or 16 bits!
Be precise.

Expressing Numbers
A 64-bit machine can reason about 64 bits at a time.
Caveat: in practice, even more. Modern x86 can use specialized hardware to crunch data 512 bits (64 bytes) at a time!

64 binary digits can express a large range of values!
Minimum: 0b0 = 0 = 0x0
A cool number: 0b10100111001 = 1337 = 0x539
A random number: 0b1011101000000011000100011110011111001011011000111100001001000 = 1675447075404019784 = 0x1740623cf96c7848
Maximum: 0b11 = 18446744073709551615 = 0xffffffffffffffff

Sidebar: what happens if you add 1 to 0xffffffffffffffff?
Integer overflow: 1 + 0xffffffffffffffff = 0x10000000000000000
The 65th bit (1) doesn't fit!
The extra bit gets put in common carry bit storage by the CPU, and the result of the computation becomes 0!
The inverse happens if we subtract 1 from 0.

Expressing Negative Numbers
How to differentiate between positive and negative numbers?

One idea: sign bit (8-bit example):
Consider: 0b00000011 == 3
If we use the leftmost bit as a sign bit: 0b10000011 == -3
Drawback 1: 0b00000000 == 0 == 0b10000000
Drawback 2: arithmetic operations have to be signedness-aware:

(unsigned) 0b00000000 - 1 = 0 - 1 = 255 == 0b11111111
(signed) 0b00000000 - 1 = 0 - 1 = -1 == 0b10000001

Clever (but crazy) approach: two's complement
One representation of zero: 0b00000000 == 0
Negative numbers are represented as the large positive numbers that they would correlate to!

 0 - 1 == 0b11111111 == 255 == -1
-1 - 1 == 0b11111110 == 254 == -2

Advantage: arithmetic operations don't have to be sign-aware!
(unsigned) 0b00000000 - 1 = 0 - 1 = 255 == 0b11111111
(signed) 0b00000000 - 1 = 0 - 1 = -1 == 0b11111111

Bonus: sign-bit is still there (for easy testing for negative numbers)!
Note: smallest expressible negative number (for 8 bits): 0b10000000 = -128

John von Neumann
First Draft of a Report on the EDVAC, 1945.

#

Consider 0xc001c475:

Anatomy of a Word

01110101110001000000000111000000

75c401c0

"most significant" bits/bytes

"leftmost" bits/bytes

"high" bits/bytes

"least significant" bits/bytes

"rightmost" bits/bytes

"low" bits/bytes

las
t b

it

fir
st

 b
it,

sig
n

bi
t

fir
st

 b
yt

e

las
t b

yt
e

#

The Need for "Registers"
CPUs need to be fast.

To be fast, CPUs need rapid access to data they're working on.

This is done via the Register File.

Reminder: Computer Architecture
CPU

Memory

Disk

Network +
Others "S

om
e

so
rt

 o
f

br
id

ge
."

L2
Cache

L1 Cache

CU

ALU

Registers

L1 Cache

CU

ALU

Registers

Registers
Registers are very fast, temporary stores for data.

You get several "general purpose" registers:
- 8085: a, c, d, b, e, h, l
- 8086: ax, cx, dx, bx, sp, bp, si, di
- x86: eax, ecx, edx, ebx, esp, ebp, esi, edi
- amd64: rax, rcx, rdx, rbx, rsp, rbp, rsi, rdi, r8, r9, r10, r11, r12, r13, r14, r15
- arm: r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14

The address of the next instruction is in a register:
eip (x86), rip (amd64), r15 (arm)

Various extensions add other registers (x87, MMX, SSE, etc).

rax

rdx

rsi

Register Size
Registers are (typically) the same size as the word width of the architecture.

On a 64-bit architecture (most) registers will hold 64 bits (8 bytes).

11110000 01000101001111001011000000000110011111011101111010110110

Partial Register Access

ah al

ax

eax

rax

Registers can be accessed partially.

All partial accesses on amd64 (that I know of)
64 32 16 8H 8L
rax eax ax ah al
rcx ecx cx ch cl
rdx edx dx dh dl
rbx ebx bx bh bl
rsp esp sp spl
rbp ebp bp bpl
rsi esi si sil
rdi edi di dil
r8 r8d r8w r8b
r9 r9d r9w r9b
r10 r10d r10w r10b
r11 r11d r11w r11b
r12 r12d r12w r12b
r13 r13d r13w r13b
r14 r14d r14w r14b
r15 r15d r15w r15b

Setting Registers
You load data into registers with... assembly! "mov" means "move".
mov rax, 0x539
mov rbx, 1337

Data specified directly in the instruction like this is called an Immediate Value.

You can also load data into partial registers:
mov ah, 0x5
mov al, 0x39

32-bit CAVEAT!
If you write to a 32-bit partial (e.g., eax), the CPU will zero out the rest of the register!
This was done for (believe it or not) performance reasons.

This sets rax to 0xffffffffffff0539:
mov rax, 0xffffffffffffffff
mov ax, 0x539

This sets rax to 0x0000000000000539:
mov rax, 0xffffffffffffffff
mov eax, 0x539

Shunting Data Around
You can also mov data between registers!

LINGUISTIC CAVEAT!
"mov" doesn't move the data, it copies it.

This sets both rax and rbx to 0x539 (1337).
mov rax, 0x539
mov rbx, rax

You can, of course, mov partials (32-bit clobber caveat applies)!
This sets rax to 0x539 and rbx to 0x39.
mov rax, 0x539
mov rbx, 0
mov bl, al

Extending Data...
Consider:
mov eax, -1

eax is now 0xffffffff (both 4294967295 and -1) but...
rax is now 0x00000000ffffffff (only 4294967295)!

What if you wanted the operate on that -1 in 64-bit land?
mov eax, -1
movsx rax, eax

movsx does a sign-extending move, preserving the Two's
Complement value (i.e., copies the top bit to the rest of the
register).

eax is now 0xffffffff (both 4294967295 and -1) but...
rax is now 0xffffffffffffffff (both 4294967295 and -1)!

Register Arithmetic
Once you have data in registers, you can compute!

For most arithmetic instructions, the first specified register stores the result.

Curious how these work? Play around with the rappel tool (https://github.com/yrp604/rappel)!

Instruction C / Math equivalent Description
add rax, rbx rax = rax + rbx add rax to rbx
sub ebx, ecx ebx = ebx - ecx subtract ecx from ebx
imul rsi, rdi rsi = rsi * rdi multiple rsi to rdi, truncate to 64-bits
inc rdx rdx = rdx + 1 increment rdx
dec rdx rdx = rdx - 1 decrement rdx
neg rax rax = 0 - rax negate rax in terms of numerical value
not rax rax = ~rax negate each bit of rax
and rax, rbx rax = rax & rbx bitwise AND between the bits of rax and rbx
or rax, rbx rax = rax | rbx bitwise OR between the bits of rax and rbx
xor rcx, rdx rcx = rcx ^ rdx bitwise XOR (don't confuse ^ for exponent!)

shl rax, 10 rax = rax << 10 shift rax's bits left by 10, filling with 10 zeroes on the right

shr rax, 10 rax = rax >> 10 shift rax's bits right by 10, filling with 10 zeroes on the left

sar rax, 10 rax = rax >> 10 shift rax's bits right by 10, with sign-extension to fill the now "missing" bits!

ror rax, 10 rax = (rax >> 10) | (rax << 54) rotate the bits of rax right by 10

rol rax, 10 rax = (rax << 10) | (rax >> 54) rotate the bits of rax left by 10

https://github.com/yrp604/rappel

Some Registers are Special
You cannot directly read from or write to rip.
Contains the memory address of the next instruction to be executed (ip = Instruction Pointer).

You should be careful with rsp.
Contains the address of an region of memory to store temporary data (sp = Stack Pointer).

Some other registers are, by convention, used for important things.

More on this later in this module!

Other Registers Exist!
Modern x86 processors have a lot of other registers!

Registers for use by the Operating System itself (stay tuned for Kernel Security!).

Registers for floating point computation.

Registers for crunching large data fast.
32 512-bit "zmm" registers!

#

The Need for "Memory"
Registers are expensive, and we have a limited number of them.

We need a place to store lots of data and have fairly fast access to it when
needed.

This place is system Memory.

Reminder: Computer Architecture
CPU

Memory

Disk

Network +
Others "S

om
e

so
rt

 o
f

br
id

ge
."

L2
Cache

L1 Cache

CU

ALU

Registers

L1 Cache

CU

ALU

Registers

Memory: Process Perspective
Your process memory is used for A LOT:
Memory ↔ Registers
Memory ↔ Disk
Memory ↔ Network
Memory ↔ Video Card

There is too much memory to name every location (unlike
registers).

Process memory is addressed linearly.
From: 0x10000 (for security reasons)
To: 0x7fffffffffff (for architecture / OS purposes)

Each memory address references one byte in memory.
This means 127 terabytes of addressable RAM!

A Process' Memory
You don't have 127 TB of RAM... But that's okay, cause it's all fake pretend virtual!

Your process' memory starts out partially filled in by the Operating System.

Your process can ask for more memory from the Operating System (more on
this later)!

0x10000 0x7fffffffffff

Program Binary Code Dynamically Allocated Memory
(managed by libraries) Library Code Process Stack OS Helper

Regions

0x10000 0x7fffffffffff

Program Binary Code Dynamically Allocated Memory
(managed by libraries) Library Code Process Stack OS Helper

Regions
Dynamically Mapped Memory

(requested by process)

Memory (stack)
The stack has several uses. For now, we'll talk about temporary data storage.

Registers and immediates can be pushed onto the stack to save values:
mov rax, 0xc001ca75
push rax
push 0xb0bacafe # WARNING: even on 64-bit x86, you can only push 32-bit immediates...
push rax
(Like mov, push leaves the value in the src register intact.)

Values can be popped back off of the stack (to any register!).
pop rbx # sets rbx to 0xc001ca75
pop rcx # sets rcx to 0xb0bacafe

stack

c0
01
ca
75

b0
ba
ca
fe

c0
01
ca
75

stack

c0
01
ca
75

Addressing the Stack
The CPU knows where the stack is because its address is stored in rsp.

push 0xb0bacafe

pop rcx

Historical oddity: the stack grows backwards toward
smaller memory addresses!
push decreases rsp, pop increases it.

stack

c0
01
ca
75

rsp = 0x7f01f3453050

stack

c0
01
ca
75

rsp = 0x7f01f3453048

b0
ba
ca
fe

0
x
7
f
0
1
f
3
4
5
3
0
5
0

0
x
7
f
0
1
f
3
4
5
3
0
4
8

stack

c0
01
ca
75

rsp = 0x7f01f3453050

0
x
7
f
0
1
f
3
4
5
3
0
5
0

#

You can also move data between registers and memory with ... mov!

This will load the 64-bit value stored at memory address 0x12345 into rbx:
mov rax, 0x12345
mov rbx, [rax]

This will store the 64-bit value in rbx into memory at address 0x133337:
mov rax, 0x133337
mov [rax], rbx

This is equivalent to push rcx:
sub rsp, 8
mov [rsp], rcx

Each addressed memory location contains one byte.
An 8-byte write at address 0x133337 will write to addresses
0x133337 through 0x13333f.

Accessing Memory

Controlling Write Sizes
You can use partials to store/load fewer bits!

Load 64 bits from addr 0x12345 and store the lower 32 bits to addr 0x133337.
mov rax, 0x12345
mov rbx, [rax]
mov rax, 0x133337
mov [rax], ebx

Load 8 bits from addr 0x12345 to bh.
mov rax, 0x12345
mov bh, [rax]

Don't forget: changing 32-bit partials (e.g., by loading from memory) zeroes out
the whole 64-register. Storing 32-bits to memory has no such problems, though.

#

Data on most modern systems is stored backwards, in little endian.
mov eax, 0xc001ca75 # sets rax to
mov rcx, 0x10000
mov [rcx], eax # stores data as
mov bh, [rcx] # reads 0x75

Bytes are only shuffled for multi-byte stores and loads of registers to memory!
Individual bytes never have their bits shuffled.
Yes, writes to the stack behave just like any other write to memory.

Why little endian?
Intel created the 8008 for a company called Datapoint in 1972.
Datapoint used little endian for easier implementation of carry in arithmetic!
Intel used little endian in 8008 for compatibility with Datapoint's processes!
Every step in the evolution between 8008 and modern x86 maintained some level of binary compatibility with its predecessor.

Memory Endianess

75ca01c0

c001ca75
0x100030x100020x100010x10000

alah

https://en.wikipedia.org/wiki/Endianness

https://en.wikipedia.org/wiki/Endianness#History

Address Calculation
You can do some limited calculation for memory addresses.

Use rax as an offset off some base address (in this case, the stack).
mov rax, 0
mov rbx, [rsp+rax*8] # read a qword right at the stack pointer
inc rax
mov rcx, [rsp+rax*8] # read the qword to the right of the previous one

You can get the calculated address with Load Effective Address (lea).
mov rax, 1
pop rcx
lea rbx, [rsp+rax*8+5] # rbx now holds the computed address for double-checking
mov rbx, [rbx]

Address calculation has limits.
reg+reg*(2 or 4 or 8)+value is as good as it gets.

RIP-Relative Addressing
lea is one of the few instructions that can directly access the rip register!
lea rax, [rip] # load the address of the next instruction into rax
lea rax, [rip+8] # the address of the next instruction, plus 8 bytes

You can also use mov to read directly from those locations!
mov rax, [rip] # load 8 bytes from the location pointed to by the address of the next instruction

Or even write there!
mov [rip], rax # write 8 bytes over the next instruction (CAVEATS APPLY)

This is useful for working with data embedded near your code!

This is what makes certain security features on modern machines possible.

Writing Immediate Values
You can also write immediate values. However, you must specify their size!

This writes a 32-bit 0x1337 (padded with 0 bits) to address 0x133337.
mov rax, 0x133337
mov DWORD PTR [rax], 0x1337

Depending on your assembler, it might expect DWORD instead of DWORD PTR.

Other Memory Regions
Other regions might be mapped in memory!

We previously talked about regions loaded due to directives in the ELF headers,
but functionality such as mmap and malloc can cause other regions to be
mapped as well.

These will feature prominently (and be discussed) in future modules.

#

Computers Make Decisions
if (authenticated) {
 leetness = 1337;
}
else {
 leetness = 0;
}

So far, we've just shunted data around.

But how do we make decisions?

What to Execute?
First, let's look at how computers execute instructions.

Recall: Assembly instructions are direct translations of binary code.

This binary code lives in memory.

Example:

This is (in hex):

0x10000 0x7fffffffffff

Program Binary Code Dynamically Allocated Memory
(managed by libraries) Library Code Process Stack OS Helper

Regions

Program
Binary Code pop rax pop rbx add rax, rbx push rax

Program
Binary Code 58 5b 48 01 d8 50

0x400800 0x400801 0x400802 0x400805

0x400800

Control Flow: Jumps
CPUs execute instructions in sequence until told not to.

One way to interrupt the sequence is with a jmp instruction:
 mov cx, 1337
 jmp STAY_LEET
 mov cx, 0
STAY_LEET:
 push rcx

jmp skips X bytes and then resumes execution!
But that's still not enough for decisions...

Program
Binary Code

mov rcx, 0x1337 jmp STAY_LEET mov rcx, 0 push rcx

Program
Binary Code 66 b9 37 13

eb 04
(skip 4 bytes)

66 b9 00 00 51

0x400800 0x400804 0x400806 0x40080a

0x400800 STAY_LEET

STAY_LEET

Control Flow: Conditional Jumps!
Jumps can rely on conditions!
mov cx, 1337
jnz STAY_LEET
mov cx, 0
STAY_LEET:
push rcx

jnz is "jump if not zero", but if what is not zero?

je
jne

jg
jl

jle
jge

ja
jb

jae
jbe

js
jns

jo
jno

jz
jnz

jump if equal
jump if not equal
jump if greater
jump if less
jump if less than or equal
jump if greater than or equal
jump if above (unsigned)
jump if below (unsigned)
jump if above or equal (unsigned)
jump if below or equal (unsigned)
jump if signed
jump if not signed
jump if overflow
jump if not overflow
jump if zero
jump if not zero

Program
Binary Code

mov rcx, 0x1337 jmp STAY_LEET mov rcx, 0 push rcx

Program
Binary Code 66 b9 37 13 75 04 66 b9 00 00 51

0x400800 0x400804 0x400806 0x40080a

0x400800 STAY_LEET

STAY_LEET

Control Flow: Conditions
Conditional jumps check Conditions
stored in the "flags" register: rflags.

Flags are updated by:
Most arithmetic instructions.
Comparison instruction cmp (sub, but discards result).
Comparison instruction test (and, but discards result).

Main conditional flags:
Carry Flag: was the 65th bit 1?
Zero Flag: was the result 0?
Overflow Flag: did the result "wrap" between positive to negative?
Signed Flag: was the result's signed bit set (i.e., was it negative)?

Common patterns:
cmp rax, rbx; ja STAY_LEET # unsigned rax > rbx. 0xffffffff >= 0
cmp rax, rbx; jle STAY_LEET # signed rax <= rbx. 0xffffffff = -1 < 0
test rax, rax; jnz STAY_LEET # rax != 0
cmp rax, rbx; je STAY_LEET # rax == rbx

Thanks to Two's Complement, only the jumps themselves have to be signedness-aware.

je
jne

jg
jl

jle
jge

ja
jb

jae
jbe

js
jns

jo
jno

jz
jnz

jump if equal
jump if not equal
jump if greater
jump if less
jump if less than or equal
jump if greater than or equal
jump if above (unsigned)
jump if below (unsigned)
jump if above or equal (unsigned)
jump if below or equal (unsigned)
jump if signed
jump if not signed
jump if overflow
jump if not overflow
jump if zero
jump if not zero

ZF=1
ZF=0
ZF=0 and SF=OF
SF!=OF
ZF=1 or SF!=OF
SF=OF
CF=0 and ZF=0
CF=1
CF=0
CF=1 or ZF=1
SF=1
SF=0
OF=1
OF=0
ZF=1
ZF=0

Looping!
With our conditional jumps, we can implement a loop (think: for, while, etc)!

Example: this counts to 10!
mov rax, 0
LOOP_HEADER:
inc rax
cmp rax, 10
jb LOOP_HEADER
now rax is 10!

With looping and conditional control flow, we have almost everything we need to
write anything we want!

Control Flow: Function Calls!
Assembly code is split into functions with call and ret.
call pushes rip (address of the next instruction after the call) and jumps away!
ret pops rip and jumps to it!

Using a function that takes an authenticated value and returns leetness:
mov rdi, 0
call FUNC_CHECK_LEET
mov rdi, 1
call FUNC_CHECK_LEET
call EXIT

FUNC_CHECK_LEET:
 test rdi, rdi
 jnz LEET
 mov ax, 0
 ret
 LEET:
 mov ax, 1337
 ret

FUNC_EXIT:
 ???

int check_leet(int authed) {
 if (authed) return 1337;
 else return 0;
}

int main() {
 check_leet(0);
 check_leet(1);
 exit();
}

Calling Conventions
Callee and caller functions must agree on argument passing.
Linux x86: push arguments (in reverse order), then call (which pushes return address), return value in eax
Linux amd64: rdi, rsi, rdx, rcx, r8, r9, return value in rax
Linux arm: r0, r1, r2, r3, return value in r0

Registers are shared between functions, so calling conventions should agree on
what registers are protected.
Linux amd64.
rbx, rbp, r12, r13, r14, r15 are "callee-saved"
(the function you call keeps their values safe on the stack).
Other registers are up for grabs
(within reason; e.g., rsp must be maintained). Save their values (on the stack)!

#

Having Effects
exit();

How do we interact with the outside world?

Even something as simple as quitting the program?

System Calls
Remember system calls? It's an instruction that makes a call into the Operating System.
syscall triggers the system call specified by the value in rax.
arguments in rdi, rsi, rdx, r10, r8, and r9
return value in rax

Reading 100 bytes from stdin to the stack:
n = read(0, buf, 100);
mov rdi, 0 # the stdin file descriptor
mov rsi, rsp # read the data onto the stack
mov rdx, 100 # the number of bytes to read
mov rax, 0 # system call number of read()
syscall # do the system call

read returns the number of bytes read via rax, so we can easily write them out:
write(1, buf, n);
mov rdi, 1 # the stdout file descriptor
mov rsi, rsp # write the data from the stack
mov rdx, rax # the number of bytes to write (same as what we read in)
mov rax, 1 # system call number of write()
syscall # do the system call

Critical resource: https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

System Calls
System calls have very well-defined interfaces that very rarely change.

There are over 300 system calls in Linux. Here are some examples:
int open(const char *pathname, int flags) - returns a file new file descriptor of the open file (also shows up in
/proc/self/fd!)
ssize_t read(int fd, void *buf, size_t count) - reads data from the file descriptor
ssize_t write(int fd, void *buf, size_t count) - writes data to the file descriptor
pid_t fork() - forks off an identical child process. Returns 0 if you're the child and the PID of the child if you're the
parent.
int execve(const char *filename, char **argv, char **envp) - replaces your process.
pid_t wait(int *wstatus) - wait child termination, return its PID, write its status into *wstatus.

Look familiar?

Critical resource: https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

"String" Arguments
Some system calls take "string" arguments (for example, file paths).

A string is a bunch of contiguous bytes in memory, followed by a 0 byte.

Let's build a file path for open() on the stack:
mov BYTE PTR [rsp+0], '/' # write the ASCII value of / onto the stack
mov BYTE PTR [rsp+1], 'f'
mov BYTE PTR [rsp+2], 'l'
mov BYTE PTR [rsp+3], 'a'
mov BYTE PTR [rsp+4], 'g'
mov BYTE PTR [rsp+5], 0 # write the 0 byte that will terminate our string

Now, we can open() the /flag file!
mov rdi, rsp # read the data onto the stack
mov rsi, 0 # open the file read only (more on this later)
mov rax, 2 # system call number of open()
syscall # do the system call

open() returns the file descriptor number in rax

61 (a)6c (l)66 (f)2f (/) 00 (\0)67 (g)
rsp+3rsp+2rsp+1rsp rsp+5rsp+4

Constant Arguments
Some system calls require archaic "constants".

Example: open() has a flags argument to determine how the file will be opened.

We can figure out the values of these arguments in C!
#include <stdio.h>
#include <fcntl.h>
int main() {
 printf("O_RDONLY is: %d\n", O_RDONLY);
}

Quitting The Program
Finally, we can quit!
mov rdi, 42 # our program's return code (e.g., for bash scripts)
mov rax, 60 # system call number of exit()
syscall # do the system call

Goodbye, world!

#

From Assembly to Binary
We built a quitter... Now we have to put it in an Assembly file:
.intel_syntax tells the assembler that we are using Intel assembly syntax
noprefix tells it that we will not prefix all register names with "%" (cause that looks silly)
.intel_syntax noprefix
mov rdi, 42 # our program's return code (e.g., for bash scripts)
mov rax, 60 # system call number of exit()
syscall # do the system call

Assembly is named after the Assembler. Let's use the assembler!

If that warning from ld annoys you, add this to the beginning of the program so
that gcc doesn't have to guess at where your code starts:
.global _start
_start:
then the rest of your code!

You've built your first assembly program!

Running the Program
Your program runs like any other...
./quitter

You can check its return code with bash's special $? variable!
./quitter
echo $?
42

Reading Assembly
You can disassemble your program!
objdump -M intel -d quitter

Extracting the Binary Code
gcc builds your Assembly into a full ELF program.

You can extract just your binary code:
objcopy --dump-section .text=quitter_binary_code quitter

Bugs in the Program
Your program might have errors! This has been
prophesied for centuries:

... an analysing process must equally have been performed in order to furnish the Analytical Engine with the necessary operative data; and that
herein may also lie a possible source of error. Granted that the actual mechanism is unerring in its processes, the cards may give it wrong orders.

- Ada Lovelace, Notes on the Analytical Engine, 1843

Debugging Bugs through the ages.
The term "bug" to mean "fault" dates back a long time:

... difficulties arise—this thing gives out and [it is] then that "Bugs"—as such little faults and difficulties are called—show themselves
- Thomas Edison, letter, 1878

Popularly attributed to Grace Hopper for the moth to the right.

To remove bugs from the program, you de-bug them!

https://en.wikipedia.org/wiki/Software_bug

https://en.wikipedia.org/wiki/Software_bug

Debugging
Debugging is done with debuggers, such as gdb.

Debuggers use (among other methods), a special debug instruction:
mov rdi, 42 // our program's return code (e.g., for bash scripts)
mov rax, 60 // system call number of exit()
int3 // trigger the debugger with a breakpoint!
syscall // do the system call

When the int3 breakpoint instruction executes, the debugged program is
interrupted and you can inspect its state!

Of course, the debugger itself can set breakpoints:
Overwrites the instruction at the breakpoint address with int3.
Emulates its effects when the breakpoint is executed instead!

Other Resources
GDB is your go-to debugging experience.
You WILL become very good friends with it.

strace lets you figure out how your program is interacting with the OS.
A great first stop for debugging.

Rappel lets you explore the effects of instructions.
Get it from https://github.com/yrp604/rappel or just use the pre-installed version in the dojo!
Easily installable via https://github.com/zardus/ctf-tools.

Documentation of x86:
Opcode listing by byte value: http://ref.x86asm.net/coder64.html
Instruction documentation: https://www.felixcloutier.com/x86/
Intel's x86_64 architecture manual: https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf

https://github.com/yrp604/rappel
https://github.com/zardus/ctf-tools
http://ref.x86asm.net/coder64.html
https://www.felixcloutier.com/x86/
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf

